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We present a methodology for computing efficiently scattered fields in a frequency
band. The main feature of this methodology is the construction of a series of discrete
problems that differ only by their right-hand sides, rather than by both their left-
and right-hand sides. Its key steps are (a) the reformulation of the acoustic scattering
problem in a bounded domain using any preferred absorbing boundary condition,
(b) the characterization of the repeated derivatives with respect to the frequency of the
scattered field as solutions of scattering-type problems with different source terms
and boundary conditions, and (c) the reconstruction of a scattered field by either
the Pa@ approximants or Wynn'’s algorithm. We report on several multifrequency
acoustic scattering examples that illustrate the accuracy and computational efficiency
of the proposed solution methodologye 2001 Academic Press
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1. INTRODUCTION

The straightforward solution of acoustic scattering problems [1] with multiple frequencie
leads to the solution of a set of linear systems of equations with difflrfrand right-hand
sides, regardless of the method chosen for discretizing the governing exterior Helmhc
problem [2-5]. At relatively high frequencies, each of these systems of equations can
sufficiently large to overwhelm some of the largest computing resources that are currer
available. The solution of such multiple systems of equations by a direct method requil
the factorization of a number of matrices equal to the number of specified frequencies, ¢
therefore leaves little room for reducing the CPU time. On the other hand, a few techniqt
have been developed for maximizing the computational efficiency of iterative schem
applied to the solution of a set akar-byproblems (for example, see [6, 7]), but few if
any significant successes have been published in the literature for the particular case of
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Helmholtz problem. For this reason, we present in this paper an alternative approach
solving efficiently multifrequency acoustic scattering problems.

Our mainidea s to construct a solution methodology that leads to the solution of a syst
of equations with multipleight-hand sides, rather than multiple systems of equations the
differ by both their left- and right-hand sides. Indeed, the solution by a direct method of
system of equations with multiple right-hand sides is computationally efficient: the matr
of the system needs be factored only once, and the sought-after solutions are obtaine
relatively inexpensive forward and backward substitutions. Furthermore, several iterat
algorithms such as block GMRES [8], block QMR [9], and FETI-H [10, 11] have alread
been tuned for the solution of systems equations with multiple right-hand sides, and h:
demonstrated computational efficiency in the context of Helmholtz problems.

The key step of our methodology is the characterization of the first and higher derivativ
of the scattered field with respect to the frequency as the solutions of a Helmholtz probl
with different source terms and boundary conditions. However, the fact that we can estab
this characterization only when the target acoustic scattering problem is formulated ir
bounded domain using any absorbing boundary condition [12—-16] sets the scope of
paper to such discretization methods of the exterior Helmholtz problem.

For the sake of clarity, we describe our solution methodology first in the context ¢
guided wave problems. Then, we extend it to acoustic scattering problems. In both ca:
we illustrate this methodology with several two-dimensional numerical examples that hig
light its potential for reducing significantly the CPU time associated with the solution c
multifrequency time-harmonic wave problems.

2. NOMENCLATURE AND ASSUMPTIONS

Throughout this paper, we adopt the following nhomenclature and assumptions

e Qis a bounded domain @%(d = 2, 3) representing an impenetrable obstacle.
e ¢ =R%Q is the homogeneous isotropic mediumRfl where the obstacle is em-
bedded.
Q¢ denotes the computational domain.
I" is the boundary of2¢ and is assumed to be Lipschitzian.
¥ isthefictitious boundary, thatis, the boundargjf itis assumed to be Lipschitzian.
sis the curvilinear abscissa.
¢ is the curvature (in two dimensions) of the artificial boundary
x is a point ofRY, andr = ||x||, is the distance from the origin point to
St = {x € RY/||x||> = 1} is the unit sphere iR,
V is the gradient operator iRY.
A is the Laplacian operator iRY.
v is the outward normal to', anda% is the normal derivative operator.
k is a positive number representing the wavenumber of the incident wave.
A= 27” is a positive number representing the wavelength.
uk) = uck; x) for x € RY.
d is a vector of the unit spherg! representing the direction of the incident plane
wave.
o u™ (k) is then-th derivative ofu(k) with respect tc, i.e.,u™ (k) = 4k,
e L2andH! are the standard Sobolev spaces [17].
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e H! (29 is the space of functions that belongHid (D) for any open-bounded s&t

in Q¢ [17].
3. THE WAVEGUIDE MODEL PROBLEM

3.1. Mathematical Formulation

In this section, we consider the waveguide model problem graphically depicted in Fig.
and mathematically formulated as

Findu(k) € H() such that

Auk) +K2u(k) =0 inQ

uk)y=1 onlI; ()
ul _ 0 onl3UTly
av

au(k)

—iku(k) =0 onTly,

wherel’ = U‘j‘:l I'; is the boundary of the waveguide, ainig the pure imaginary number
satisfyingi® = —1.
The exact solution of the boundary value problem (BVP) (1) is

Uex(k) = € in Q. 2)

Hence,uex(k) is an analytic function ok € R whose Taylor’s expansion with respectkto
can be written as

oo k _ n
uk =" %Um)(ko)-

n=0

Next, we characterize the derivativeg™ (k))nex.

Ty: =0
I:u=1 Ty: 2 —iku=0
0 0
Ty: =0

FIG. 1. A waveguide model problem.
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3.2. Characterization of the Derivatives(k)

Let
(n)
o = R
vo(K) = u(k) 3
v,]_(k) =0.

From the differentiation of the BVP(1) with respectikpit follows that forn > 1

Avn(K) + K2 (K) = —2kvn_1(K) — vp_2(k)  in

(k) =0 onI'y
4
3Un(k) =0 onl'3UTy ( )
ootV
D —ikun(K) = ivn_1(K) onTy,

which shows that the members of the sequeig€k))nn+ are the solutions of BVPs
that differ only by their source terms and one of the boundary conditions, that is, by the
right-hand sides after discretization. This characterization suggests that, in principle,
following method for computingi(k) for different values ok € R is an efficient one:

Step 1. Compute the sequen@g(ko))nen for a focal wavenumbeiy.
Step 2. For each wavenumber of interest ko, deduceau(k) from Taylor's expansion

uk) = (AK)"vq (ko) (5)
n=0
where
Ak = k — ko.

In practice, the Taylor expansion (5) must be truncated, which raises the issue of the intel
of convergence of theumericalalgorithm chosen for evaluating this sum.

The two-step solution method summarized above is, in principle, computationally ef
cient because, once the BVP (1) is discretized—for example, by a finite element methot
each discrete solution vectag(ky) corresponding tay, (ko) is obtained by solving

(K — kM —ikoS)Vn(ko) = fn neN, (6)

whereK andM are the standard stiffness and mass matrices, respectivel\s anthe
mass-like matrix associated with the discretization of the boundary condition specified
I',. The vectorfy is dictated by the Dirichlet boundary condition of the BVP (1), and all
subsequertt, vectors are given by

fn = 2koMvn_1(ko) + MV_2(ko) +1SWh-1(kg) n>1 (7

Hence, the sequence of vectargko) is the solution of a system of equations with multiple
right-hand sides. As stated earlier, such a system of equations can be solved efficientl
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either direct or iterative methods. As for the expansion (5), we report next on its evaluation
the Pa@ approximants [18], and Wynn's algorithm which is also known ag talgorithm
[19, 20].

3.3. Numerical Examples

Here, we consider a configuration of the waveguide shown in Fig. 1, viheyana x a
squared domain. We focus on three frequency b#iikisa) centered around three different
frequencies correspondingkea = 6, kga = 10, andkpa = 24. For each frequency band, we
discretize the computational domain &yhy, x a/hg, Q1 finite elements, wherly, is de-
termined so that all the frequenciesiikoa) are well resolved by tha/ hy, x a/hy, mesh.

For each focal wavenumbdég, we first solve Egs. (6) and (7) to determine a certain
sequence of vectong, (ko). Then, we construct for various valueslot= kg + Ak, ka €
B(koa), the solutionsu(k) by applying to Eq. (5) a Padapproximantll, M](L + M + 1
terms; see Appendix A) and Wynn's approximati@}) of order(n, p) (vector version,
n+ p+ 1terms; see Appendix B). In order to justify the usage of these two approximatic
methods, we also attempt to construct the solutiaik$ by computing directlyN terms of
the Taylor series described in Eq. (5). We monitor the accuracy of all three approaches
computing for each of them and each wavenunidike relative error iif2 defined as follows

_Nluk) — uex(K)llL2()

k) = 8
et lUex(K) [l L2(02) ®)

Furthermore, for each wavenumbesuch thaka € B(koa), we also compute a finite el-
ement “reference” solution using the mesh associated #fi3a); that is, we solve the
system of equation

(K —k®M —ikSyu(k) = f (9)

using the mesh associated wiftikoa). We report in Tables I-lll the accuracy results ob-
tained for thebestTaylor, Pa@, and Wynn approximations, and compare them with those o
the reference solutions. We use the acromym to indicate that a specific approximation
method diverges for the desirexk.

The following observations are noteworthy:

o Forallthree values of the wavenumligrthe Pad approximants and Wynn’s algorithm
improve the interval of convergence of the Taylor series by a factor ranging between 3 anc

e The Pa@ approximants and Wynn’s algorithm appear to possess similar intervals
convergence and deliver comparable accuracy.

e Forkpa = 6, kpa = 10, andkpa = 24 the proposed methodology delivers either the
same accuracy as the straightforward approach (reference solutions), or reproduces
exact solution with less than 2.5% relative error, in the frequency bB@s= [1, 14],
B(10) = [2, 18], andB(24) = [17, 31], respectively.

e Twenty-three terms at most are needed for theeRadVynn approximations to recon-
struct the solutiong(k) in the relatively large frequency bands identified above. This mean
that the main computational cost associated with sweeping on the frequency in these bz
is that associated with the solution of a system of equations with 23 right-hand sides. Giv
that such a system can be solved efficiently by either a direct or smart iterative algorith
the results reported in Tables I-lll illustrate the potential of the proposed methodology f
solving efficiently multifrequency time-harmonic wave problems.
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TABLE |

Accuracy Results for a Waveguide Problem and a Square-Shaped

Geometry—koa = 6; hy, = a/50

417

Taylor Taylor Pag’ Paad’ Wynn Wynn Reference
aka N ek LM ek (e ek ek
ko
0 52.3 0.0023
-5 314.0 DIV DIV [8, 8] 0.0023 (0, 16) 0.0023 1.8e-05
—4 157.0 DIV DIV 5, 5] 0.0020 (0, 10) 0.0010 0.0001
-3 104.7 25 0.0025 [5, 5] 0.0018 (0, 10) 0.0017 0.0003
3 34.9 22 0.0059 [6, 6] 0.0079 (0, 12) 0.0079 0.0075
4 31.4 DIV DIV [7, 7] 0.0098 (0,12) 0.0096 0.0090
5 28.5 DIV DIV [7, 7] 0.0143 (0, 12) 0.0124 0.0128
6 26.2 DIV DIV [7, 7] 0.0181 (0, 14) 0.0181 0.0176
7 24.7 DIV DIV [11,11] 0.0227 (0, 24) 0.0209 0.0203
8 22.4 DIV DIV [11, 11] 0.0368 (0, 26) 0.0278 0.0258
9 20.9 DIV DIV [14, 14] 0.0755 (0, 26) 0.0356 0.0339
10 19.6 DIV DIV [18, 18] 0.1798 (0,32) 0.0395 0.0384
11 18.5 DIV DIV DIV DIV (0,32) 0.0421 0.0454
12 17.4 DIV DIV DIV DIV (0, 38) 0.0610 0.0577
13 16.5 DIV DIV DIV DIV (0, 30) 0.1545 0.0651
TABLE Il
Accuracy Results for a Waveguide Problem and a Square-Shaped
Geometry—koa = 10; hy, = a/100
Taylor Taylor Pad’ Paa@’ Wynn Wynn Reference
ska N ek (LM ek p ek ek)
ko
0 62.8 0.0022
-9 628.0 DIV DIV [8, 8] 0.0713 (0, 16) 0.1260 2.71e-06
-8 314.0 DIV DIV [8, 8] 0.0231 (0, 16) 0.0415 3.08e-05
-7 209.3 DIV DIV [8, 8] 0.0060 (0, 16) 0.0099 7.92e-05
-6 157.0 DIV DIV [8, 8] 0.0019 (0, 10) 0.0023 0.0001
-5 125.6 DIV DIV [8, 8] 0.0013 (0, 16) 0.0013 0.0003
—4 104.7 DIV DIV [8, 8] 0.0012 (0, 14) 0.0012 0.0005
-3 89.7 8 0.0827 [5, 5] 0.0010 (0, 10) 0.0018 0.0007
3 48.3 8 0.0084 [6, 6] 0.0051 (0,12) 0.0051 0.0050
4 44.9 DIV DIV [6, 6] 0.0064 0,12) 0.0064 0.0065
5 41.9 DIV DIV 6, 6] 0.0069 (0,12) 0.0099 0.0085
6 39.3 DIV DIV [8, 8] 0.0100 (0, 16) 0.0100 0.0096
7 36.9 DIV DIV [8, 8] 0.0124 (0, 16) 0.0144 0.0115
8 34.9 DIV DIV [8, 8] 0.0255 (0, 16) 0.0473 0.0146
9 33.1 DIV DIV [8, 8] 0.0878 (0, 16) 0.1511 0.0163
10 31.4 DIV DIV [8, 8] 0.2068 (0, 16) 0.3382 0.0186
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TABLE Il
Accuracy Results for a Waveguide Problem and a Square-Shaped
Geometry—koa = 24; hy, = a/150

Taylor Taylor Pad’ Paa@’ Wynn Wynn Reference
Aka % N ek) [L, M] e(k) (n, p) e(k) e(k)
0
0 39.2 0.0151
-9 62.8 DIV DIV [9,9] 0.1131 (0, 18) 0.2012 0.0038
-8 58.8 DIV DIV [9,9] 0.0455 (0, 18) 0.0801 0.0042
-7 55.4 DIV DIV [9, 9] 0.0157 (0, 18) 0.0242 0.0051
-6 52.3 DIV DIV [9,9] 0.0082 (0, 18) 0.0096 0.0065
-5 49.6 DIV DIV [9,9] 0.0076 (0, 18) 0.0078 0.0072
-4 47.1 DIV DIV [8, 8] 0.0083 (0, 18) 0.0083 0.0083
-3 44.9 6 0.0868 [3,3] 0.0059 (0, 6) 0.0102 0.0102
-2 42.8 7 0.0062 [2,2] 0.0082 (0, 4) 0.0092 0.0114
2 36.2 6 0.0281 [4, 4] 0.0182 (0, 8) 0.0182 0.0182
3 34.9 DIV DIV [4,4] 0.0209 0, 8) 0.0209 0.0213
4 33.6 DIV DIV [5, 5] 0.0221 0, 14) 0.0237 0.0238
5 325 DIV DIV [7, 7] 0.0250 (0, 14) 0.0244 0.0253
6 31.4 DIV DIV [7,7] 0.0246 0, 14) 0.0254 0.0289
7 30.4 DIV DIV [7,7] 0.0285 (0, 18) 0.0367 0.0324
8 29.4 DIV DIV [9, 9] 0.0539 (0, 18) 0.1190 0.0342
9 28.5 DIV DIV [9,9] 0.1470 (0, 20) 0.2751 0.0381

4. THE SCATTERING PROBLEM

4.1. Mathematical Formulation in a Bounded Domain

Next, we consider the-dimensional(d = 2, 3) scattering of time-harmonic acoustic
waves by an impenetrable obstacle embedded in a homogeneous medium. This proble
governed by the BVP [1]

Findu(k) € H _(2®) such that
Au(k) — kK?u(k) =0 in Q¢

Bu= f(k) onTl (10)
lim r % (3”(") - iku(k)) -0,
r—o0 or
where
f(k) = —Bek*d, (11)

andB is aboundary operator that characterizes the type of the scatterer [1]. More specifica
B is a Neumann derivative operator for a sound-hard scatterer, a Dirichlet operator fo
sound-soft scatterer, and an impedance operator for a scatterer with a lossy boundary.
simplicity but without any loss of generality, in this paper we consider the case of a soun
hard scatterer.

As stated in the introduction, for a scattering problem, we can establish a characterizat
of the derivativesi™ (k) that is similar to that presented in Section 3.2, only when the BVF
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(10)is first reformulated in a bounded domain. Such a step is also required when the exte
Helmholtz problem (10) is to be discretized by a domain-based method such as the fir
difference or finite element method. The definition of a bounded computational domain
typically achieved by surrounding the scatterer by an artificial boundary positioned at
certain distance from the surface of the scatterer. The “far-field” behavior of the scatter
field is then represented either by boundary conditions specified on the artificial bounde
or by assumed interpolation in the complement of the computational domain. In this wol
we consider only the former approach, and more specifically nonreflecting or absorbi
boundary conditions [12—16]. Using such an approach, we reformulate the BVP (10) as

Findu(k) € H*(g) such that
—Au(k) — K?uk) =0 in Q¢

WO _ 4 onr (12)
ov
du(k) — M&Kuk) =0 onx,
av

where M (k) is a differential operator, and the third of Eqgs. (12) is a general represent
tion of absorbing boundary conditions. Different approaches for constructing an absorbi
boundary condition are usually associated with different approaches for approximating
Dirichlet-to-Neumann (DtN) operator [21, 27], and result in different expressiond ¢ky.

All absorbing boundary conditions share however the same objective, which is to reduce
much as possible the reflection of waves from the artificial boundary so that the resulti
BVP (12) is well posed, and its solution is a “good” approximation of the restriction of th
solution of the BVP (10) te2;.

The variational formulation of the BVP (12) goes as

Findu(k) € H*(g) suchthat

(13)
H(uk), v) = R(v) Yve HY(QF),
whereH(., .) is a symmetric bilinear form defined di(Qf) x HY(QF) by
H(u, v):/ Vu-VvdX—kz/ uvdx—/ M (K)uv ds (14)
Q¢ Q¢ >
andR(-) is a linear form defined ohz(Qg) by
R(v) = / f (kyv dx. (15)
r

4.2. Characterization of the Derivatives of the Scattered Field with Respect to k

Itis well known (for example, see [22] and the references therein) that the saligiipn
of the BVP (10) is a meromorphic functionbfe C, with poles in the half-plan&(k) < 0.
Consequentlyu(k) can be expanded as a Taylor series with respeé&titothe interval
10, oo[. However, it does not seem possible to derive for the BVP (10) a characterizati
of the derivativesu" (k) that is similar to the one described in Section 3.2. On the othe
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hand, for all classical local absorbing conditions, the funckies M (k) is analytic in the
interval ]0, oo[, which implies that the solution(k) of the BVP (12) can also be expanded
as a Taylor series with respectkoFurthermore, it turns out that for the BVP (12), we are
able to characterize the derivativeaugk) with respect tk as in Section 3.2, and therefore
to exploit the expansion af(k) with respect t.

For this purpose, we reintroduce the sequegék))nen defined in Egs. (3) and differ-
entiate the BVP (12) with respect ko This leads to

—Avn(K) — K2on(K) = 2kvn_1(K) + vn_2(k)  in Q

dvn (k) . 1 ™
5, = n!f (k) onl’ (16)
dvn(K) 1
S M (K)vn(K) = § :aM@(k)un,p(k) ony,

p=1
which shows that every, (k) is the solution of the variational problem
H(wn(K), v) = Ra(v) Vv e HY(QF), (17)

whereR,(-) is a linear form defined oh?(Q§) by
Ro(v) = / f(K)vdx
r

1
Rn(v)z/—f(n)(k)vdx—i—Zk/ vn_1(K)v dx (18)
rn! Qe
|
+/ vn,z(k)vdx—i—Z—/ M® K vn_pkvds n> 1.
Qg p=1 pl 2

FromEgs. (14, 17, 18), itfollows that,, (k))nen+ are the solutions of BVPs that differ only
by their source terms and their boundary conditions, that is, by their right-hand sides af
discretization. This characterization of the derivati@s(k) explains why, in principle, the
methodology outlined in Section 3.2 is also attractive for solving multifrequency acoust
scattering problems.

4.3. A Bayliss—Turkel-like Absorbing Boundary Condition

In all examples discussed in the remainder of this paper, we adopt the second-or
Bayliss —Turkel-like boundary condition originally developed in [21] for on-the-surface
applications, and recently extended in [23] for finite element applications. However, v
remind the reader that the solution method we propose in this paper works with any nc
reflecting boundary condition of the forﬁégi—'o — M(Kk)u(k) = 0, including, for example,
Keller and Givoli's DtN condition [27].

Intwo dimensions, the differential operatdrk) associated with the Bayliss—Turkel-like
absorbing boundary condition is

(. ¢ c? 9 1 dv
M(k)v—(lk—§>v+mv+8—s<mg>y (19)
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wheres and¢ are the curvilinear abscissae and the curvature on the fictitious bouBdary
respectively. From Eq. (19), it follows that

1 c?
MKuvds=ik | u-vds— = uvds+ uvds
Jmwuds=ik fLu-vas—3 [[ewast g [ F

1 1 ou dv
‘iffg_ik)g%ds (20)

For the differential operatoM (k) specified in (19), the sequence of derivatives
(MP(K)) pen satisfies

/M(l)(k)UUdS—I/UUdS-‘r /g“ Wwds

1 i ou dv
e L R 21
ZL(g—ik)zasas S (21)
liP 1 pliP  Quadv
M® (yup ds = / 2 PITgs_ 1 PHT dudv 2.
/ (uvds =g C(;—|k)P+lu ST ).t —ikpiasas > P

Hence, the sequence of derivativids® (k)) peN* generated by the characterization (16) of
the derivativesi™ (k) incurs simply the construction of basic mass and stiffness matrice
on the fictitious boundarg.

4.4, Applications

Here, our objective is to highlight the potential of the proposed methodology for solvin
efficiently multifrequency acoustic scattering problems. For this purpose, we consider t\
differenttwo-dimensional problems involving two different scatterers but the same directit

of the incident plane wave (see Eq. (11)). In the first problem, the scatterer is a disk
radiusa. In the second one, it is a submarine-shaped flat object of lerayitiig. 2).

For both problems, we design the exterior artificial boundanas a circle of radius

R =a + ma, wherem is a positive number. For each problem, we consider a sequen
of frequency band#(koa) associated with a sequence of increasing focal frequencie
whose corresponding wavenumbers are denotekhblfor each frequency band, we ap-
ply the solution methodology proposed in this paper to compute the scatteredufields

k = ko + Ak. Given the results obtained for the waveguide problem discussed in Secti
3.3, we use a[10, 10] Padipproximant and a (0, 20) or (0, 28) Wynn approximation (scala
version; see Appendix B) to reconstruct the solution veatgks + AK).

In all cases, we discretize the computational domain by P1 finite elements, and
less otherwise specified, solve the resulting algebraic systems of equations by the FET
iterative method [10] equipped with the multiple right-hand side accelerator described
[11].

As in Section 3.3, for each wavenumlxesuch thaka € B(kpa), we also compute a finite
element reference solution using the mesh associated3ghtfa). We assess the accuracy
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FIG. 2. A submarine-shaped scatterer: the computational domain.

of the reference solutions and that of the solutions reconstructed by the Tayler,aPad”
Wynn approximations by evaluating for each one of them a relative error computed as
Eq. (8), but where thé ,-norm on is replaced by thé ,-norm on the surface of the
scattereil".

We perform all computations in double arithmetic precision on a Silicon Graphics Origi
2000 system.

4.4.1. Scattering of time-harmonic waves by a didkor this problem, an analytical
form of the exact solution can be found in [1]. We consider three different focal frequenci
corresponding tpa = 1, koa = 5; andkga = 31. Forkga = 1, we set the artificial bound-
ary T at 025\ from the surface of the scatter@n = 0.25) and discretize the computational
domain intoNmesh= 1, 424 grid points. Fokpa = 5, we setz atm = 1.27\ and gener-
ate a mesh wittNmespn = 34, 931 grid points. Fokpa = 31, we seim = 8\ and generate
a fine mesh with 1, 297, 196 grid points. We note that these meshes have been tailc
to deliver a comparable accuracy for all three focal frequencies considered here. Inde
using for each focal frequency its assigned mesh, we obtain three reference solutions
the three different scattering problems, which exhibit similar relative errors of the ord
of 1072,
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TABLE IV

The Disk Scattering Problem: Accuracy Results —kpa = 1;
hy, = @/6.3; m = 0.25; Npesn= 1,424

Taylor20 Pad’[10,10] Wynn(0,20) Reference
Aka L e(k) e(k) e(k) e(k)

0 40.0 0.0053
-0.9 400.0 DIV 0.0369 0.0258 0.0255
—-0.75 160.0 DIV 0.0171 0.0169 0.0169
-0.5 80.0 0.0093 0.0092 0.0092 0.0092
-0.25 53.3 0.0036 0.0036 0.0036 0.0036

0.25 32.0 0.0080 0.0080 0.0080 0.0080

0.5 26.7 0.0092 0.0092 0.0092 0.0092

1.0 20.0 DIV 0.0107 0.0107 0.0107

15 16.0 DIV 0.0143 0.0143 0.0142

2.0 13.3 DIV 0.0359 0.0212 0.0194

25 11.4 DIV 0.1140 0.0446 0.0252

We report in Tables IV=VI the relative errors obtained for the 20-term Taylor series, tt
[10, 10] Pad  approximant, the Wynn approximation of order (0, 20), and the referenc

solutions. These results show that

423

e depending on the wavenumbkg, the Pa@” approximant and Wynn's algorithm

improve the interval of convergence of the Taylor series by a factor ranging between 3 an
o the Pa@’approximant and Wynn'’s algorithm have similar intervals of convergence ar

deliver comparable accuracy.

TABLE V

The Disk Scattering Problem: Accuracy Results—ya = 5; hy, = a/31.8;
m = 1.27; Npesh= 34,931

Taylor 20 Pad’[10,10] Wynn (0,20) Reference
A
Aka — e(k) e(k) e(k) e(k)
h,

0 40.0 0.0017
-3.0 100.0 DIV 0.1421 0.1844 0.0011
-2.5 80.0 DIV 0.0197 0.0169 0.0010
-2.0 66.7 DIV 0.0021 0.0019 0.0015
-15 57.1 DIV 0.0022 0.0022 0.0022
-1.0 50.0 0.0869 0.0021 0.0021 0.0021
-0.5 44.4 0.0016 0.0016 0.0016 0.0016

0.5 36.4 0.0028 0.0028 0.0028 0.0028

1.0 334 0.0891 0.0036 0.0036 0.0036

15 30.8 DIV 0.0039 0.0039 0.0039

2.0 28.6 DIV 0.0043 0.0043 0.0037

25 26.7 DIV 0.0086 0.0083 0.0039

3.0 25.0 DIV 0.0310 0.0283 0.0050

35 235 DIV 0.0785 0.0697 0.0063
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TABLE VI
The Disk Scattering Problem: Accuracy Results—kja = 31;
hy, = @/200;m = 8; Niesh= 1,297,196

Taylor 20 Pad’[10,10] Wynn (0,20) Reference
Aka > ek e(k) e(k) e(k)
hio
0 40 0.0028
—4.0 45.8 DIV 0.0980 0.0980 0.0022
-35 45.0 DIV 0.0278 0.0249 0.0022
-3.0 44.2 DIV 0.0081 0.0081 0.0023
-2.0 42.7 DIV 0.0026 0.0026 0.0026
-1.0 41.3 0.0031 0.0026 0.0026 0.0026
1.0 38.7 0.0034 0.0031 0.0031 0.0031
2.0 37.6 DIV 0.0032 0.0032 0.0031
3.0 36.5 DIV 0.0118 0.0118 0.0035
35 35.9 DIV 0.0278 0.0278 0.0037
4.0 35.4 DIV 0.0732 0.0732 0.0036

e for kpa = 1, kpa = 5, andkoa = 31 the proposed methodology delivers either the
same accuracy as the straightforward approach (reference solutions), or reproduces
exact solution with less than 3% relative error, in the frequency bé#iidis= [0.1, 3],
B(5) = [2.5, 8], andB(31) = [27.5, 34.5], respectively.

Besides the cost of solving one Helmholtz problem to compkg), the main computa-
tional cost of the method proposed in this paper for solving multifrequency time-harmon
wave problems is by far that associated with the characterization of the derivafi@s.

As established in Section 3.2 and Section 4.2, this characterization requires solving a sys
of equations with a number of right-hand sides equal to the number of terms that must
included in the Paglor Wynn algorithms to achieve the desired level of accuracy. Experi
ence reveals that using a number of terms in the neighborhood of 20 delivers an excell
accuracy (see Tables I-VI). After this system of equations is solved, the scattered fi
can be reconstructed at relatively no computational cost, for any freqleeady + AK,
where|AK| is in the convergence interval of the Ragl Wynn algorithms. It follows that

if the system of equations associated with the characterization of the derivatigg

is solved by a direct method, the proposed computational methodology can be expec
to be feasible even for a two-frequency problem, and can also be expected to speec
the solution time of the straightforward approach (multiple left-hand side problems) by
factor almost as large as the number of successfully sampled frequencies. However, if
system of equations associated with the characterizatiof™ak) is solved by an itera-
tive method tuned for the solution of systems with multiple right-hand sides, the propos
computational methodology could be feasible only if the number of successfully sampl
frequencies is larger than a certain threshold that depends on the chosen iterative so
This is illustrated in Table VII for the scattering problem considered here, where 21 tern
are included in either the Padsr Wynn approximations, and where the system of equa
tions associated with the characterization of the derivatives is solved by the accelera
FETI-H method [10, 11]. The performance results reported in Table VII show that in thi
case, our computational methodology is feasible when the scattered field is to be compt
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TABLE VII
The Disk Scattering Problem: CPU Performance Results on an Origin 2000 System 21-Term
of a Pad® of Wynn Approximation—FETI-H Iterative Solver

kea=5 koa = 31
B(5) =[2.5,80] B(31) = [27.5, 34.5]
Nmesh = 34, 931 Nmesh = 1, 297, 196

10 processors 20 processors
CPU time for 1 frequency 5 seconds 304 seconds
CPU time for more than 2 frequencies 18 seconds 1,742 seconds
Breaking point 4 frequencies 6 frequencies
Speedup factor for a sweep by incrementaéi = 0.5 3.3 2.8

for at least four different frequencies wh&ga = 5, and six different frequencies when
koa = 31. The speedup factor it delivers depends, among others, on the size of the inc
ment used in the frequency sweep. For example, for a sweep by incremexka ef 0.5,

the width of the frequency band for which the R4d0, 10] and Wynn (0, 20) approxima-
tions achieve an excellentaccuracy is such thdtdar= 5, our computational methodology
achieves a speedup factor equal to 3.3, anttdar= 31, it achieves a speedup factor equal
to 2.8.

4.4.2. Scattering of time-harmonic waves by a submarine-shaped flat obst&ote.
this problem, which is graphically depicted in Fig. 2, the exact solution is not availabl
Consequently, we assess the accuracy of the Taylog,Radl Wynn approximations by
comparing the solutions they generate with those of the straightforward approach (multi
left-hand sides), that is, with the reference solutions. Hence, for this problem, we define
relative error as

~ luk) — Gk L2
k) =
€ 16 ez,

(22)

where the tilde notation is used to designate the reference solution.

As for the previous scattering problem, we consider several focal frequencies cor
sponding tdkga = 2, kga = 8, kga = 31, andkga = 63. In each case, we set the artificial
boundary at + A from the center of the scatterém = 1), and generate an unstructured
mesh using 40 elements per focal wavelength as a guidgliftg, ~ 40).

For each sampled frequency in the neighborhood of one of the four focal frequenci
we compute a reference solution, and reconstruct three other solutions using a 20-t
Taylor series, the [10, 10] Paddpproximant, and the Wynn approximation of order (0O,
28). We report on the accuracy of the latter solutions in Tables VIII-XI. We note the

e as in the previous examples, depending on the wavenukgbttre Paé approximant
and Wynn'’s algorithm improve the interval of convergence of the Taylor series by a fact
ranging between 3 and 5,

o the Pa@ approximant and Wynn'’s algorithm exhibit similar intervals of convergence
but Wynn'’s algorithm reconstructs a slightly more accurate solution, and

e for kpa = 2, koa = 8, kpa = 31, andkopa = 63 our methodology for performing ef-
ficiently a frequency sweep reproduces the reference solutions with less than 4% rela
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TABLE VIII
The Submarine Scattering Problem: Accuracy
Results—koa = 2.0; hy, = @/13; m = 1; Njpesn= 13,810

Taylor 20 Pad 10, 10] Wynn (0, 28)
Aka 2 €(k) €(k) €k)
th
0 40
-1.75 320.00 DIV 0.0497 0.0288
-15 160.00 DIV 0.0138 0.0023
-1.0 80.00 0.5318 0.0000 0.0000
-0.5 53.33 0.0000 0.0000 0.0000
0.5 32.00 0.0000 0.0000 0.0000
1.0 26.67 0.2364 0.0000 0.0000
15 22.86 DIV 0.0007 0.0000
2.0 20.00 DIV 0.0108 0.0056
2.5 17.78 DIV 0.0556 0.0329

error, in the frequency band%2) = [0.25, 4.5], B(8) = [4.5, 12], B(31) = [26, 36], and
B(63) = [57.5, 68.5], respectively.

We also reportin Table Xl the CPU performance results obtained using the 29-term Wy
approximation for two different cases. In the first case, we solve the system of equatic
associated with the characterization of the derivatives by the accelerated FETI-H iterat
algorithm [10, 11]. In the second case, we solve it by an optimized direct skyline meth

TABLE IX
The Submarine Scattering Problem: Accuracy Results—kpa = 8;
hg, = @/50; m = 1; Niesh= 44,090

Tylor 20 Paa[10, 10] Wynn (0, 28)
Aka 2 0 ) 0
hy,

0 40
—-4.0 81.51 DIV 0.1181 0.0864
-3.5 72.14 DIV 0.0417 0.0347
-3.0 64.71 DIV 0.0109 0.0064
-2.5 58.66 DIV 0.0016 0.0008
—-2.0 53.64 DIV 0.0000 0.0000
-15 49.43 DIV 0.0000 0.0000
-1.0 45.81 0.0037 0.0000 0.0000

1.0 34.46 0.0048 0.0000 0.0000

1.5 33.56 DIV 0.0000 0.0000

2.0 31.86 DIV 0.0000 0.0000

2.5 30.32 DIV 0.0007 0.0002

3.0 28.92 DIV 0.0054 0.0014

35 27.65 DIV 0.0214 0.0060

4.0 26.48 DIV 0.0434 0.0187

4.5 25.41 DIv 0.0818 0.0478
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TABLE X

The Submarine Scattering Problem: Accuracy
Results—koa = 31; hy, = a/200; m = 1; Nyesn= 239,524

Taylor Paa'[10, 10] Wynn (0, 28)
Aka i €(k) €(k) €k)
hig

0 40
—6.0 49.44 DIV 0.1391 0.1016
-55 48.48 DIV 0.0758 0.0639
-5.0 47.57 DIV 0.0423 0.0310
—45 46.68 DIV 0.0198 0.0179
—-4.0 45.83 DIV 0.0078 0.0036
-3.0 44.22 DIV 0.0004 0.0001
-20 42.71 DIV 0.0000 0.0000
-15 42.00 0.0022 0.0000 0.0000
-1.0 41.31 0.0000 0.0000 0.0000

1.0 38.76 0.0000 0.0000 0.0000

15 38.17 0.0025 0.0000 0.0000

2.0 37.60 DIV 0.0000 0.0000

3.0 36.51 DIV 0.0002 0.0000

4.0 35.48 DIV 0.0055 0.0036

5.0 34.50 DIV 0.0383 0.0215

55 34.04 DIV 0.0719 0.0448

6.0 33.58 DIV 0.1182 0.0853

TABLE XI

The Submarine Scattering Problem: Accuracy
Results—koa = 63.0; hy, = a/400;m = 1; Nypesn= 973,288

Taylor 20 Pad 10, 10] Wynn (0, 28)
Aka 2 €(k) (k) €k)
hig

0 40
—6.0 44.09 DIV 0.0972 0.0518
-55 43.71 DIV 0.0560 0.0246
-5.0 49.93 DIV 0.0295 0.0106
—45 42.96 DIV 0.0142 0.0042
-4.0 42.59 DIV 0.0054 0.0010
-3.0 41.88 DIV 0.0002 0.0000
-2.0 41.20 0.0962 0.0000 0.0000
-1.0 40.53 0.0000 0.0000 0.0000

1.0 39.27 0.0000 0.0000 0.0000

2.0 38.66 1.027 0.0000 0.0000

3.0 38.08 DIV 0.0003 0.0000

4.0 37.51 DIV 0.0098 0.0014

45 37.23 DIV 0.0145 0.0048

5.0 36.96 DIV 0.0511 0.0159

5.5 36.70 DIV 0.0592 0.0397

6.0 36.42 DIV 0.1068 0.0687

427
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TABLE XII
The Submarine Scattering Problem CPU Performance Results on an Origin 2000 System
29-Term Wynn Approximation—FETI-H Solver vs Direct Skyline Solver

koa = 31 koa = 63
B(31) = [26, 36] B(63) = [57.5, 68.5]
Nmesh= 239, 524 Nmesh= 973 288
10 processors 10 processors
CPU time 59 seconds (FETI-H) 405 seconds (FETI-H)
for 1 frequency 235 seconds (direct) 2,606 seconds (direct)
CPU time 420 seconds (FETI-H) 2,771 seconds (FETI-H)
for more than 2 frequencies 558 seconds (direct) 4,846 seconds (direct)
Breaking point 7 frequencies (FETI-H) 7 frequencies (FETI-H)
2 frequencies (direct) 2 frequencies (direct)
Speedup factor for a sweep 3.0 (FETI-H) 3.5 (FETI-H)
by increments oiAka=0.5 9.2 (direct) 12.9 (direct)

[24] after we have renumbered the equations for optimal storage and arithmetic complex
by the Reverse Cuthill McKee algorithm [25]. Both the FETI-H and optimized direct skyline
solvers are parallelized on the Origin 2000 system. The obtained CPU performance res
show that for this scattering problem

e when the system of equations associated with the characterization of the derivative
solved by the accelerated FETI-H iterative algorithm [10, 11], the proposed computatior
method is feasible when at least seven frequencies are sampled in&i#igror 5(63).

On the other hand, when this system of equations is solved by an optimized direct skyll
method, it is feasible as soon as two frequencies are sampled in B{@®®ror 5(63);

o for frequency sweeps by increments Aka = 0.5, our method equipped with the
accelerated FETI-H solver [10, 11] achieves a speedup factor equal to 3.0 when sweey
in B(31), and a speedup factor equal to 3.5 when sweepiff(&3). When equipped with
a direct skyline solver, these speedup factors increase to 9.2 and 12.9, respectively; an

e nevertheless, our computational method is several times faster when equipped with
FETI-H solver (and perhaps any other fast iterative solver) than with an optimized dire
skyline solver.

5. THE PADE APPROXIMANTS VS WYNN'S ALGORITHM

Finally, we reportin this section on our experience with thesRad! Wynn approximation
methods. Computing a Padipproximant requires inverting for each pointtoanM x M
matrix C—in our case, typically a 1& 10 matrix—after which the reconstruction of the
sought-after solutions for all frequencies in the interval of convergence of this method inct
only evaluations of rational functions. Ft > 10, C becomes so ill-conditioned that the
evaluation of the Padapproximant becomes very difficult.

On the other hand, for each frequency in the interval of convergence, Wynn's alg
rithm requires recomputing the partial Taylor sums and reperforming the epsilon algorith
Hence, when the number of target frequencies is large, Wynn’s algorithm becomes m
computationally expensive than Réslimethod.
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The scalar implementation of Wynn's approximation of order (0, 2L) is in theory equiv
alent to the [, L] Pad8 approximat. Fot. < 10, both approximations deliver comparable
accuracy. Fot. > 10, often only Wynn'’s algorithm is sufficiently stable.

6. CONCLUSION

By characterizing the derivatives of the scattered field with respect to the frequency
the solutions of scattering-type problems with different source terms and boundary cc
ditions, we have shown that multifrequency acoustic scattering problems can be sol
at the computational cost of the solution of a single system of equations with multip
right-hand sides. The size of this system of equations is the same as that of the systel
equations arising from the discretization of the exterior Helmholtz problem for any give
frequency. The number of right-hand sides is equal to the number of terms required
a Pad- or Wynn-type algorithm for reconstructing accurately the scattered field for th
wavenumbek + 8k, knowing its value and the values of its derivatives for the wavenum
berk. This characterization holds when the acoustic scattering problem is formulated ir
bounded domain, using an absorbing boundary condition. It also holds when the artific
boundary is replaced by a finite thickness layer designed to damp all the waves enterir
from the side of the scatterer, as in the perfectly matched layer technigue of Berenger [
The results obtained for the solution via this characterization of various multifrequen
guided wave and acoustic scattering problems fer ka < 63 suggest that the required
number of Pad’or Wynn terms is around 20. They also suggest that the interval of col
vergence of the proposed solution methodology is of the ordémaaf 5. Sweeping on
ka in such intervals by incrementska = 0.5 typically results in a speedup factor equal
to 3 when an iterative method is used for solving the system of equations with multip
right-hand sides, and a speedup factor of 10 when solving this system by a direct meth
Using smaller increments increases these speedup factors, and using larger ones decr
them.

APPENDIX A: THE PAD E APPROXIMANTS [18]

Suppose that a given functioinz) can be expanded in power series as
f(z) = Zcizi. (23)
i=0

A Pad approximant off (z), denoted by [, M], is

a+az+---+a 1zt 4a

L, M] = :
M = bzt + by 127 T+ b

(24)

where

bo = 1. (25)
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The remaindeb; coefficients are the solution of the following linear algebraic system o
equations

CL-M+1 CL-M4+2 CL-M43 --. CL bwm CLy1
CL-M+2 CL-M4+3 CL-M+4 ... CLy1 bv-1 CL2
CL-M+3 CL-M+4 CL-M45 ... CL42 bv_2 CL+3
= — . , (26)
| CL CLi1 Cly2 ... Ciym-1] | b1 | |CL+M |
and theg; coefficients are given by
dp = Cp
a = ¢+ bico
a = Cp + bycy + bocy
(27)

min(L, M)

a=0C+ Z bic .
i—0

Hence, computing the Paddpproximant IL, M] requires the knowledge of the first
L + M + 1 coefficients of the power series (24). This approximant agrees with the trunc
tion of the power series (24) to order+ M + 1.

APPENDIX B: WYNN'S ALGORITHM [19, 20]

The approximation by Wynn'’s algorithm of the functidndefined by its power series
(24) consists of constructing a recursive sequence with double e@fjpas

g =0; n=012...
&N = Si; n=012... (28)

=&+ np=012...,

n+l _ ¢on ;
Ep gp

whereS, denotes the partial sum of orderthat is,
n .
S = Z GZ. (29)
i=0

Hence, the Wynn algorithm is a recursive procedure that avoids the inversion of any line
system. Similar to the case of the Raaproximants, the construction &f requires the
knowledge of the firsh + p + 1 coefficients of the power series (24). Wheris a vector
valued functiorn(c; € CN), the vector version of this procedure consists of replacing in (28!
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e term‘gnﬂilgn by (£pt* — €)1, wherey ! denotes the inverse of the vecton cN
p T Cp
1 y
Y == = (30)
ZiN=0 YiVi

and the bar notation is used here to denote a complex conjugate.

=
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